
AP 7.00

Pricing
Userexit
Manual

OVERVIEW
DEVELOPMENT
UP-GRADE

VERSION 1.04 – 02 APRIL 2008 - © SAP AG 2008

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

2

CHANGE LOG

Version Date Modification
1.00 01-DEC-2005 First release for AP7.00 SP03 (SP02 with notes 902329 and 902038)

1.01 19-JAN-2006 Additional examples in Chapter 4.2 and list of incompatible interface changes
in chapter 7.2

1.02 06-APR-2006 Enhanced delivered Eclipse Project Template and revised chapter 4.2

1.03 25-JUL-2006 Enhanced chapter 2.5 and 2.10. Added appendixes.

1.04 02-APR-2008 Refined chapter 2, included remarks regarding right JDK version and IDEs.

© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or for any purpose without the
express permission of SAP AG. The information
contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its
distributors contain proprietary software components
of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®,
PowerPoint® and SQL Server® are registered
trademarks of Microsoft Corporation.

IBM®, DB2®, DB2 Universal Database, OS/2®,
Parallel Sysplex®, MVS/ESA, AIX®, S/390®, AS/400®,
OS/390®, OS/400®, iSeries, pSeries, xSeries, zSeries,
z/OS, AFP, Intelligent Miner, WebSphere®, Netfinity®,
Tivoli®, Informix and Informix® Dynamic Server

TM
 are

trademarks of IBM Corporation in USA and/or other
countries.

ORACLE® is a registered trademark of ORACLE
Corporation.

UNIX®, X/Open®, OSF/1®, and Motif® are registered
trademarks of the Open Group.

Citrix®, the Citrix logo, ICA®, Program
Neighborhood®, MetaFrame®, WinFrame®,
VideoFrame®, MultiWin® and other Citrix product
names referenced herein are trademarks of Citrix
Systems, Inc.

HTML, DHTML, XML, XHTML are trademarks or
registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems,
Inc.

JAVASCRIPT® is a registered trademark of Sun
Microsystems, Inc., used under license for technology
invented and implemented by Netscape.

MarketSet and Enterprise Buyer are jointly owned
trademarks of SAP AG and Commerce One.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, and
other SAP products and services mentioned herein as
well as their respective logos are trademarks or
registered trademarks of SAP AG in Germany and in
several other countries all over the world. All other
product and service names mentioned are the
trademarks of their respective companies.

PRICING USEREXIT MANUAL 3

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

4

CONTENTS

Change Log .. 2

Contents ... 4

1 Overview ... 7
1.1 Motivation ... 7
1.2 What changed?... 7
1.3 Walk through .. 7
1.4 Prerequisites ... 8
1.5 Further Information ... 9
1.6 SAP E-Commerce for ERP using VMC ... 9
1.7 SAP Support for User Exits Implementations .. 9

2 Development Environment ... 10
2.1 Setting up Java ... 10
2.2 Setting up Eclipse ... 10
2.3 The Prepared Eclipse Project ... 10
2.4 AP Pricing Userexits ... 12
2.5 Restriction on the Java Implementation .. 12
2.6 Create the PRC_UE_CUSTOMER.jar .. 13
2.7 Uploading the Developed Userexits .. 13
2.8 Transport of Java Coding .. 14
2.9 Check for Uploaded Java Userexits .. 14
2.10 Deletion of Userexits ... 14

3 Administration ... 15
3.1 Overview about different Userexit Types... 15
3.2 Register an Implementation .. 16
3.3 Assign Implementations to Formula .. 18

4 Available Exits and APIs ... 20
4.1 Logging capabilities .. 20
4.2 Userexit Types .. 20
4.2.1 Number Dependent Userexits .. 20
4.2.2 Userexits with Multiple Active Implementations .. 26
4.2.3 Userexits with one unique implementation ... 27

5 Debugging .. 30
5.1 Set VMC in Debug Mode .. 30
5.2 Attach Eclipse Java Debugger .. 30
5.3 View VMC Log Files ... 30

6 Upgrade Guide ... 32

PRICING USEREXIT MANUAL 5

6.1 Preparation ... 34
6.2 Implementation ... 34
6.3 Register and Assign the Userexit .. 36
6.4 Uploading and Testing .. 37

7 Interfaces and Incompatible Changes ... 38
7.1 Interface Packages ... 38
7.1.1 Condition Finding Interfaces... 38
7.1.2 Pricing Interfaces ... 38
7.1.3 Document (Sales/Purchase Order) Interfaces .. 38
7.2 Incompatible Interface Changes to earlier releases .. 41
7.2.1 IConditionFindingManagerUserExit .. 41
7.2.2 IPricingDocumentUserExit ... 41
7.2.3 IPricingItemUserExit... 42
7.2.4 IPricingConditionUserExit and IGroupConditionUserExit .. 43
7.2.5 ILastPrice ... 44
7.2.6 IDocumentUserExitAccess ... 45
7.2.7 IItemUserExitAccess .. 46
7.2.8 ISPCDocumentUserExitAccess ... 47
7.2.9 ISPCItemUserExitAccess ... 48
7.2.10 IPricingUserExits .. 48
7.2.11 IDocumentUserExit .. 50
7.2.12 IItemUserExit ... 51
7.2.13 ISPCItemUserExit .. 52

A Background on Java Restrictions .. 53
A.1 Shared Memory caused restrictions .. 53
A.2 Reuse of Java VM caused restrictions .. 54

B Other ways to influence Pricing ... 55
B.1 Passing additional information to pricing ... 55
B.2 External Data Source for Conditions ... 55

C FAQ ... 56
C.1 Implementation ... 56
C.2 Troubleshooting .. 57

PRICING USEREXIT MANUAL 7

1 OVERVIEW

1.1 Motivation
SAP developed a very stable application server and also organized one of the first reliable development systems for
large business applications. It includes everything a developer need. Additionally it includes a versioning and transport
system, so even large application landscapes can be provided with changes and supplementary developed parts.

The server contains many preventive measures to stabilize it and improve the performance of the running applications
on top. Some of these measures are separation of user sessions and OS processes, improved DB transaction handling,
better memory footprint and much more.

Now SAP also goes that direction and applies nearly all server features not only to ABAP but also to Java. The Virtual
Machine Container (VMC) runs Java, reads its code from the database and offers the same stability as the kernel to
ABAP. All parts of the Internet Pricing Configurator (IPC) use now the new server infrastructure with Application
Platform (AP) 2005 (e.g. delivered with CRM 5.0) and are called Pricing, Tax and Configuration Engines.

1.2 What changed?
With the move from IPCs own server technology to the VMC, SAP also changed the extension technique of allowing
customer to add special coding to the existing functionality in pricing and condition technique.

Chapter 6 contains some helpful comments, how to adapt CRM 3.0, 3.1 and 4.0 user exits to the new way in AP 2005.

1.3 Walk through
An end-to-end example will be used in this document. It is a very short description and refers to a lot of details given in
the rest of the document.

A customer would like to overturn the condition value calculation in pricing and include a special rounding algorithm.
His requirement is that the given condition value is rounded and the value of 0.01 per given quantity is subtracted from
it.

Example:
Item Condition Value Value Rounded Expected
3 PC 99.70 EUR 100 EUR 99.97 EUR
8 BOX 40.50 EUR 41 EUR 40.92 EUR
2 KG 1.10 EUR 1 EUR 0.98 EUR

The customer would first setup his development environment (see first part of chapter 2), understand which user exit
type to use (chapter 4, in this case 4.2.1.4), administer the meta data for that user exit (chapter 3) and then upload his
development to the system (see last part of chapter 2).

The coding needed will be a condition value formula as it changes the automatically calculated condition value and will
look like this:
ZSpecialRoundingValueFormula
package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;
import com.sap.spe.conversion.ICurrencyValue;
import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

8

import com.sap.spe.pricing.transactiondata.userexit.ValueFormulaAdapter;

public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =
 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,
 IPricingConditionUserExit condition) {
 BigDecimal result;

 ICurrencyValue val = condition.getConditionValue();
 userexitlogger.writeLogDebug("old cond value: "
 + val.getValueAsString());

 result = val.getValue().setScale(0, BigDecimal.ROUND_HALF_UP);

 BigDecimal qnt = item.getProductQuantity().getValue();
 qnt = qnt.divide(new BigDecimal("100"), 2, BigDecimal.ROUND_HALF_UP);

 userexitlogger.writeLogDebug("new cond value: " + result.subtract(qnt));

 return result.subtract(qnt);
 }

 public BigDecimal overwriteGroupConditionValue(
 IPricingDocumentUserExit item, IGroupConditionUserExit condition) {
 // do nothing
 return null;
 }

}

This coding must be written, compiled and uploaded with help of the eclipse environment and the transaction
/SAPCND/UE_DEV (enter a leading /n while using the direct transaction field).

The metadata entries are maintained using the transaction /SAPCND/UEASS with the usage PR (for pricing). In the
implementations part selected with the userexit type VAL, the customer adds the new userexit name ZSPECROUND
and goes to details. Here he adds a description and the class name your.company.pricing.userexits.

ZSpecialRoundingValueFormula. Now the coding is known to pricing and a formula number must be attached to that
userexit. In the section formulas with the application CRM (or other) the customer adds the number 600 and selects his
userexit name to it.

The only thing left for the customer is to use that formula and put it in a pricing procedure on the right line and restart
the transaction using pricing functionality. Due to the buffering mechanism it may be necessary to restart the VMC or a
buffer refresh takes place (see note 867428).

1.4 Prerequisites
The reader of this manual is expected to have a good understanding of the java language. Additional knowledge about
pricing is required if new userexits should be implemented. It is also expected that the user has basic knowledge about
the eclipse development environment for java.

Depending on the installed Support Package of AP 7.00 following table shows the SAP notes which must be
implemented.
SP Note Description
<02 Various issues have been fixed with SP02. We strongly recommend not to use SP00 and SP01
<03 902038 Error messages with unchanged userexit entries in /SAPCND/UEASS
<03 902329 Module and Package checks in /SAPCND/UE_DEV
<03 915882 Attribute mapping in Userexit maintenance
<05 928865 Userexit Development concerning external taxes

PRICING USEREXIT MANUAL 9

1.5 Further Information
There are several additional information available elaborating different topics more detailed.
Source Description
Note 809820 Note containing this document and the prepared eclipse project.
Note 880687 Logging and Tracing
Note 844817 Technical Information
Note 844816 Information for Upgrade
Note 867428 Adapt buffer refresh times
SAP Help SAP Virtual Machine Container (HELP.BCVMC)

1.6 SAP E-Commerce for ERP using VMC
There are several additional notes needed to implement userexits for the VMC in the ERP E-Commerce scenarios.
Source Description
Note 878865 How to fill userexit tables for the IPC ERP scenario
Note 885415 Error in the maintenance of the user exit Customizing tables
Note 937044 Charactaristic Value Surcharge in ERP ISA scenario
Note 978434 Field assignment for user exits, the 'A' usage not possible
Note 1025553 Missing number ranges for Pricing userexit in ISA R/3 scenario
Note 1035413 Feldzuordnung bei Userexits der Verwendung 'A' nicht möglich

1.7 SAP Support for User Exits Implementations
Support of issues with customer user exits are not covered by a normal SAP support contract. This document only helps
to implement or let implement user exits and should not be regarded as part of the standard delivery. In case of troubles
SAP support may request you to use the (remote) consulting service.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

10

2 DEVELOPMENT ENVIRONMENT
The following section describes one way of developing pricing userexits. Only freely available tools which can be
downloaded from the internet are used. Other integrated development environments (IDE) do also work but additional
effort has to be spent because SAP already delivers with this note an example project for eclipse. Other eclipse based
IDEs like NetWeaver Developer Studio may also work with that prepared project template.

2.1 Setting up Java
The pricing userexits shall be compiled with the J2SE 1.4.x or a compatible java compiler of version 1.4.x. Also the
used libraries must be compatible with J2SE 1.4.x. The java development kit is available for download using
http://java.sun.com/downloads. Old versions are also available at http://java.sun.com/javase/downloads/previous.jsp.

A standard installation of the JDK is sufficient.

It is important that the compiled class files are compatible to a JDK 1.4 version as well as the standard library used is
only JDK 1.4. The VMC java environment of SAP BASIS 7.00 does only support 1.4 class files and libraries.

2.2 Setting up Eclipse
Eclipse 3.1 is recommended and can be downloaded using http://www.eclipse.org/downloads. Newer versions may also
work. A simple unpacking of the downloaded file is all that is needed to install eclipse.

The eclipse-IDE manages the files in projects and those in workspaces. A workspace contains all administrative data of
eclipse. Project files, like java files, may lie also in that workspace but can also be outside. In this document the first
approach has been chosen.

2.3 The Prepared Eclipse Project
Setting up the prepared project keeps the effort low and helps in fastened results. An experienced user can easily adapt
the project layout and location to their needs (e.g. using a source versioning system).

1. Create an empty folder where all relevant data is stored (e.g. C:\DEV). This folder will be the workspace folder
for eclipse.

2. Unpack the ZIP file attached to the SAP note into that empty directory (e.g. C:\DEV). Then a subdirectory
with the name PRC_UE_CUSTOMER should appear (C:\DEV\PRC_UE_CUSTOMER), containing the
project files.

3. Start your SAP GUI on the same machine, login into the system and start transaction /SAPCND/UE_DEV
(using the command field enter /n/SAPCND/UE_DEV).

http://java.sun.com/downloads.
http://java.sun.com/javase/downloads/previous.jsp.
http://www.eclipse.org/downloads.

PRICING USEREXIT MANUAL 11

4. Select the Download option and activate the option Libraries. Downloading requires a minimum authorization
of exporting data from SAPGUI into the local file system (Object S_GUI, ACTVT 61)

5. Enter as path the newly created subfolder PRC_UE_CUSTOMER (e.g. C:\DEV\ PRC_UE_CUSTOMER) and
hit the execute button. The downloading will take a few minutes and create some subfolder in the
PRC_UE_CUSTOMER directory containing some API jars and some source jars

6. Start eclipse and select as workspace the manual created folder (C:\DEV). Eclipse will create the meta data for
an empty workspace

7. Select File Import… and Import an Existing Project into Workspace. Select the PRC_UE_CUSTOMER
folder as root directory. Eclipse should show the PRC_UE_CUSTOMER as project name

8. Now the JRE System Libraries have to be added to the build path of eclipse. Activate the context menu on the
project (right mouse click) and select Build Path Add Libraries. Select JRE System Library and use a 1.4.x
version

9. Prepare the API source and build the HTML documentation. Activate the context menu (right mouse click) on
build_api_doc.xml and select Run As Ant Build. Please ignore the error message thrown during that process

10. Refresh the eclipse Project by right mouse clicking on the project and selecting Refresh (F5) in the context
menu

Now the default project is ready to be used for custom developments. Java Documentation for all API classes is
available and can be viewed by eclipse auto completion help or by opening the file
PRC_UE_CUSTOMER/api_doc/index.html.

The project has following structure (the screenshot can look different):

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

12

The different folders are:

src: should contain the customer development. It is recommended to use also in java some naming convention
to better distinguish standard SAP coding and own development. The java packages should e.g. start with
your.company.

lib_api: contains all relevant APIs needed to compile the userexits

api_doc: contains the generated java API documentation (see index.html)

examples_src: contains for each userexit type an example

lib_src: contains jar files with sources to some API classes that can serve as reference documentation too

sap_standardexits_src: contains the source code of the AP 2005 delivered standard SAP pricing userexits only
for your reference

2.4 AP Pricing Userexits
SAP Application Platform 7.00 delivers also some SAP pricing userexits which includes most of the standard userexits
for pricing in ERP (R/3) and previous CRM versions. These standard exits can be found in the project subfolder
sap_standardexits_src and can be used as a reference for own implementations.

2.5 Restriction on the Java Implementation
The java coding of userexits are executed in VMC which restrict and discourage usage of special java functionality.
Additionally some restriction concerning database access and usage of SAP JCo applies also.

Don’t use Property-Files (java.util.Properties)

Don’t use direct JCo calls or make use of OpenSQL/JDBC/Database/File/OS access (use external datasources
for condition types or determine additional attributes before pricing is triggered)

Don’t use non static non-primitive variables (use containers available on the item or document with
set/getObjectForUserExits). However simple static final members like final static java.lang.String

or java.math.BigDecimal constants can be used.

Don’t use own classloaders

Don’t use Thread and other related functionality (e.g synchronized keyword)

Don’t use own Garbage Collection code or java.lang.ref.Reference

All classes must implement java.io.Serializeable without custom serialization code and transient fields

PRICING USEREXIT MANUAL 13

Further explanations and background information is found in Appendix A. Some workarounds needed to overcome the
restrictions can be found in the Appendix B and the FAQ.

2.6 Create the PRC_UE_CUSTOMER.jar
After implementing the customer userexits, it is time to upload the userexits classes into the system. However, it is
required first to archive all the classes (preferably together with the sources) into a JAR file. Before creating the JAR
file, make sure the java sources and compiled classes are up-to-date and error free.

To generate a JAR file eclipse provides the ‘JAR Packager’ feature that guides you though easy steps to configure and
create such a JAR file.

1. From Eclipse’s FILE menu choose the EXPORT option.

2. From the pop up list choose JAR FILE and click NEXT.

3. From the resources tree of PRC_UE_CUSTOMER choose only the SRC node making sure that the other nodes
LIB_API and LIB_SRC are not chosen.

4. Make sure that the option ‘export generated class files and resources’ is selected.

5. Enter a name and path for the JAR file e.g. ‘PRC_UE_CUSTOMER.jar’.

6. Click on FINISH to generate the JAR file.

To make it even easier, SAP delivers a configuration file called ‘create_PRC_UE_CUSTOMER _jar.jardesc’ which
contains pre-configuration data that spares the above steps.

Simply right mouse click on the jardesc file within eclipse and select CREATE JAR from the context menu. This will
export the JAR file PRC_UE_CUSTOMER.jar into Eclipse’s workspace folder. That’s the default destination and can
be changed by using the option “Open JAR Packager …” in the context menu of the .jardesc file.

Important is that the JAR file may only contain the class files, possibly with its java files along with a META-
INF/MANIFEST.MF file. All files must not to use the SAP namespace (com.sap*).

2.7 Uploading the Developed Userexits
Uploading the PRC_UE_CUSTOMER.jar file to the database is done via transaction /SAPCND/UE_DEV (direct start
of the transaction possible with a leading /n). This task requires advanced authority settings. Following authorization
objects are concerned:

S_CTS_ADMI Administration Functions in Change and Transport System

S_DATASET Authorization for file access

S_DEVELOP ABAP Workbench

S_GUI Authorization for GUI activities

S_TCODE Transaction Code Check at Transaction Start

S_VMC_TRAN Transport of Java Development Objects

To upload a library it is required to have a modifiable workbench request and an ABAP package (ABAP development
class) which exist beforehand. With selecting the upload option in transaction /SAPCND/UE_DEV, the transaction
request and the path to the jar file is necessary. The uploading is triggered by the execute button.

The jar file shall only contain customer coding. Uploading any other class will lead to an unexpected behavior of VMC
and all applications running on VMC. For each ABAP package only one jar file can be uploaded.

An already existing version of the userexits is replaced by the new uploaded version (when using the same ABAP
package). Each transaction using the VMC which requests classes from the uploaded user exits will load the new
version if not already cached (statically buffered). If you upload a new version over an existing JAR file, the new
coding in not taken into account automatically. You should reset the VMC (use transaction sm52->Virtual Machine
Container->Reset).

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

14

After the upload the jar file itself is not required anymore and can be deleted.

2.8 Transport of Java Coding
The transport of java coding is the same for ABAP as for Java. Both work just the same way.

2.9 Check for Uploaded Java Userexits
The transaction sm53 contains also a browser to see the installed and uploaded java modules along with the userexit
files.

1. Select in the Navigation tree the element Application

2. Browse the Installation tree down to the shown level 0/SAP/IPC Modules

3. All modules ending with _SAPCND_UE are customer uploaded modules equals jar files.

2.10 Deletion of Userexits
The deletion of user exits is supported by uploading an empty JAR file to the same ABAP development class/package.

As of NW2004S (7.00) SAP_BASIS Support Package 09 you can also use the function module (transaction se37)
SVMCRT_TRANS_JARC_DELETE to delete the uploaded user exits. The parameters are following:

PF_COMPONENTNAME is ‘IPC’

PF_MODULENAME is the ABAP development class name (the ABAP package) with the suffix
‘_SAPCND_UE’. E.g. if the ABAP package for the upload was ‘/CUST/PRICING’ the module name would
be ‘/CUST/PRICING_SAPCND_UE’.

PF_TRKORR is the ABAP correction transport request name.

For older SAP_BASIS SPs the deletion is not supported and an empty jar file must be uploaded into the same ABAP
package.

PRICING USEREXIT MANUAL 15

3 ADMINISTRATION
Every pricing userexit (including standard SAP exits) has to be known to the runtime. Each implementation is loaded
during runtime and controlled by configuration available through the transaction /SAPCND/UEASS. The work is split
into two parts.

1. The implementation (the class) must be registered and a userexit name (a technical name) has to be assigned to
it and

2. The assignment of the defined userexit name to a formula number (like the condition value formula number)
which can be used in the other configuration parts (e.g. pricing procedure).

But first a little overview is presented.

3.1 Overview about different Userexit Types
After starting the transaction /SAPCND/UEASS and entering the right usage (here PR for Pricing) the following screen
will come up.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

16

It shows all different types of available userexits for the selected usage. A short comment is provided on each line by
clicking the docu-information-icon. Each type of userexit for the usages PR (pricing), FG (freegoods) and PD (Product
substitution) is described in chapter 4.2.

On the detail screen of each userexit type the scope and the userexit interface is given. The scope is on of A, B or C.

A - number-dependent (like the requirements): The userexit is referenced via a formula number from other
configuration like pricing procedure

B - one unique implementation (like the document init formulas). The userexit with the number 0 will be executed

C - multiple implementations (like pricing init). Each userexit with an attached formula number will be executed

The formula number assignment is explained in chapter 3.3. Also userexit of scope B and C must get a number
assigned.

The userexit interface entry describes the adapter class which a userexit must inherit (details in chapter 4.2).

3.2 Register an Implementation
On the view level of implementations the different available implementations of a userexit are given. Here the customer
classes must be registered.

PRICING USEREXIT MANUAL 17

The registering of a new implementation can be done (cross client customizing) by creating a new entry. These data
should be entered:

Userexit name which is a symbolic or short description of the functionality. The customer namespace starts
with Y or Z.

Name of the implementation class (e.g. your.company.pricing.userexits.SpecialBaseFormula). There is no
restriction on the name but it should be different from com.sap*.

And additional a long description.

If a userexit depends on attributes passed by the calling application, the attributes names (used in the implementation)
must be entered on the sub screen attributes along with a description.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

18

3.3 Assign Implementations to Formula
After the registering of a java userexit implementation the symbolic name of a userexit must be mapped to formula
numbers used in e.g. a pricing procedure or access type.

In the formula screen the formula number gets assigned to a userexit name. All types of userexits must be have a
formula number assigned. The range reserved for customer formula number can be reviewed with transaction
/SAPCND/UERNG and is depending on the application and usage (e.g. CRM and PR – Pricing). For userexits of scope
B (one unique implementation) the formula number 0 must be used and therefore no customer range is defined. Don’t
change the range entries on your own.

PRICING USEREXIT MANUAL 19

In the sub screen all needed attributes (those used in the userexit implementation) must be mapped with fieldnames of
the communication structure. Please mark the difference between the symbolic (internal) name of an attribute and the
field name which is not visible to the userexit implementation.

After registration and assignment the userexit formula must be uploaded before it can be assigned to any pricing
procedure or other configuration. As the configuration is buffered for one day (default setting) the changes will only
become immediately active with a restart of the VMC or the application server. While testing different configuration in
a test or development system also the function module IPC_DET_CLEAR_CUST_BUFFER can be executed.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

20

4 AVAILABLE EXITS AND APIS
This chapter focuses on the available userexits APIs, their types and functions.

4.1 Logging capabilities
For customer pricing userexits there is an easy way of including fast logging. The
com.sap.spe.base.logging.UserexitLogger class implements two methods for logging debug messages or error
messages. The logging is quite fast and logging is only done if the appropriate log level is reached which can be defined
on run-time. For additional information about setting log levels and viewing the log files see chapter 5.3.

ZSpecialRoundingValueFormula (shorten)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package your.company.pricing.userexits;

import com.sap.spe.base.logging.UserexitLogger;
[..]
public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =
 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,
 IPricingConditionUserExit condition) {
[..]
 userexitlogger.writeLogDebug("old cond value: "
 + val.getValueAsString());
[..]
 }
}

Line 8: Create a static instance of the UserexitLogger class. As constructor parameter pass the actual class.

Line 13: Use writeLogDebug(String s) or writeLogError(String s) to log the string s into the log.

4.2 Userexit Types
This section provides a detailed description illustrated via a code example showing the APIs with their corresponding
parameters, and a business use case example in the Javadoc part of the code.

The userexits types are categorized under three scopes:

A - number-dependent: This type of userexits can have multiple active implementations and requires formula
numbers to decide when to call this userexits implementation. This type of userexits is called according to the
assignment of the formula number in the customizing, for example in the customizing of the pricing procedure.
This is the most commonly used type of userexit

B - one unique implementation: This type of userexits can have only one unique implementation. The userexit
with the formula number 0 assigned is called.

C - multiple active implementations: The userexits of this type are always called when a number is assigned to it.
In case multiple active implementations of this type of userexits are required, assign dummy formula numbers
to decide the sequence in which the userexits implementations should be called.

4.2.1 Number Dependent Userexits

4.2.1.1 Requirement (REQ)
This kind of userexits are used during condition finding on pricing procedure step/counter level and on condition access
step level. They must be assigned, in the customizing, to the userexits type REQ – Requirement.

PRICING USEREXIT MANUAL 21

The userexits class must be inherited from RequirementAdapter and overwrite the method checkRequirement. If this
method returns false, the current access in not made.

ZSpecialRequirement
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

package your.company.pricing.userexits;

import com.sap.spe.condmgnt.customizing.IAccess;
import com.sap.spe.condmgnt.customizing.IStep;
import com.sap.spe.condmgnt.finding.userexit.IConditionFindingManagerUserExit;
import com.sap.spe.condmgnt.finding.userexit.RequirementAdapter;

public class ZSpecialRequirement extends RequirementAdapter {
/**
 * Purpose: This is an example of a pricing requirement. This requirement is
 * met if the document's item category is relevant for pricing and no
 * previous condition in the pricing procedure has set the condition
 * exclusion flag. This requirement can be assigned to condition types in
 * the pricing procedure to avoid unnecessary accesses to the database when
 * an item is not relevant for pricing or a condition exclusion indicator
 * has been set.
 *
 * Example: A sales order is placed in the system. Some of the items in the
 * order will be free to the customer and the customer service
 * representative indicates this with the item category TANN. In the
 * customizing, item category TANN has been configured as not relevant for
 * pricing. Within the pricing procedure, the user assigns this requirement
 * to all condition types. Using this requirement, the system does not
 * access any pricing condition records for the free line item. In addition
 * to offering free items, some of the prices for products in the sales
 * order are defined as net prices. When a net price is found, no subsequent
 * discounts or surcharges should be assigned to the item. This pricing
 * requirement also ensures that further condition records are not accessed
 * when a net price has already been found for the item (condition exclusion
 * has been set).
 */
public boolean checkRequirement(IConditionFindingManagerUserExit item,

IStep step, IAccess access) {
String pricingIndicator = item.getAttributeValue("PRICING_INDICATOR");
return pricingIndicator.equals("X");

}
}

Line 8: Inherit from the API class RequirementAdapter.

Line 32: Overwrite the implementation of the checkRequirement method.

Line 34: Retrieve an attribute value to be used for the check. The attribute name is the symbolic name assigned to the
userexit implementation, not the communication structure field.

Line 35: Return the check result, ‘true’ to make the access, ‘false’ to avoid the access.

4.2.1.2 Condition Base Formula (BAS)
The condition base formula can be used to change the automatically calculated base value of a condition. This kind of
userexits can be assigned, in the customizing, to the userexits type BAS – Condition base formula.

This userexit is called after the calculation of the condition base value for each pricing condition. The userexit class
must be inherited from the BaseFormulaAdapter and overwrite the method overwriteConditionBase. The
overwriteConditionBase method has the parameters pricingItem and pricingCondition which represents the item
and the current condition.

If this method returns a null object reference, pricing will keep the automatically called base value.
ZSpecialBaseFormula

1
2
3
4
5
6
7
8
9

10

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.pricing.transactiondata.userexit.BaseFormulaAdapter;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

public class ZSpecialBaseFormula extends BaseFormulaAdapter {

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

22

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/**
 * Purpose: This is an example of a condition base value formula. A
 * condition base value formula can be used to influence the basis the
 * system uses when computing a pricing value. A condition base formula is
 * assigned to a step (line) in the pricing procedure.
 *
 * This example formula is used to convert the basis to an integer number.
 * For example, a basis of 300.153 would be converted to 300. This formula
 * can be used to compute pallet discounts.
 *
 * Example: A company sells their products in cases. Each of their materials
 * has a conversion factor to pallets. When an order is placed by a
 * customer, the user would like the system to calculate the number of full
 * pallets for each line and to offer a 5 USD discount per full pallet
 * ordered. The user sets up a discount condition type in the pricing
 * procedure and assigns this condition base value formula to it. Within the
 * condition records for this condition type, the user maintains the 5 USD
 * per pallet discount rate. If an order line item is placed that contains
 * 5.5 pallets, the system will adjust the base value to 5 and compute a
 * discount of 25 USD for the sales line item.
 *
 */

public BigDecimal overwriteConditionBase(IPricingItemUserExit pricingItem,
IPricingConditionUserExit pricingCondition) {

return pricingCondition.getConditionBase()
.getValue().setScale(0, BigDecimal.ROUND_FLOOR);

}
}

Line 9: Inherit from the API class BaseFormulaAdapter.

Line 34: Overwrite the implementation of the overwriteConditionBase method.

Line 37: Returns the new value for the condition base.

4.2.1.3 Scale Base Formula (SCL)
This kind of userexit can be used to replace the automatically determined scale base. This kind of userexits must be
assigned, in the customizing, to the userexits type SCL – Scale Base Formula.

This userexit is called after the calculation of the condition scale base value for a pricing condition. The userexit class
must be inherited from the class ScaleBaseFormulaAdapter and overwrite at least overwriteScaleBase. If group
condition processing for that condition type is enabled, also the overwriting of method overwriteGroupScaleBase is
possible. Both methods can return null to indicate that the original value shall not be changed.

ZSpecialScaleBaseFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.ScaleBaseFormulaAdapter;

public class ZSpecialScaleBaseFormula extends ScaleBaseFormulaAdapter {

/**
 * Purpose: This is an example of a scale basis formula. A scale basis
 * formula is assigned to a condition type in the customizing and alters the
 * value that the system uses to read the scales in a condition record. This
 * formula sets the integer number part of the value to zero. For example, the
 * value 203.559 would be changed to 0.559.
 *
 * Example: A company sells their products in cases. Each of their materials
 * has a conversion factor to pallets. When an order is placed by a
 * customer, the user would like the system to add up the quantities across
 * items and compute the number of full pallets. If the customer does not
 * order in full pallets, the user would like to charge a fixed surcharge of
 * 20 USD. The user sets up a condition type in the pricing procedure. In
 * customizing for this condition type , this scale base formula is assigned

PRICING USEREXIT MANUAL 23

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 * as well as the group condition flag so that the quantities across order
 * items can be considered. Within the condition records for this condition
 * type, the user maintains a rate of "from 0.001 PAL" a fixed charge of 20
 * USD. If an order is placed, for example, that is equal to 10.35 pallets,
 * this formula will alter the value to 0.35 and then read the condition
 * record scale. A surcharge of 20 USD would then be applied to the overall
 * sales order.
 *
 */
public BigDecimal overwriteScaleBase(IPricingItemUserExit pricingItem,

IPricingConditionUserExit pricingCondition,
IGroupConditionUserExit groupCondition) {

BigDecimal roundedScaleBaseValue = pricingCondition.getConditionScale()
.getValue().setScale(0, BigDecimal.ROUND_FLOOR);

return pricingCondition.getConditionScale().getValue().subtract(
roundedScaleBaseValue);

}

public BigDecimal overwriteGroupScaleBase(
IPricingDocumentUserExit pricingDocument,
IGroupConditionUserExit groupCondition) {

BigDecimal roundedScaleBaseValue = groupCondition.getConditionScale()
.getValue().setScale(0, BigDecimal.ROUND_FLOOR);

return groupCondition.getConditionScale().getValue().subtract(
roundedScaleBaseValue);

}
}

Line 11: Inherit from the API class ScaleBaseFormulaAdapter.

Line 36: Overwrite the implementation of the overwriteScaleBase method.

Line 42: Return the changed scale base value.

Line 47: Overwrite the implementation of the overwriteGroupScaleBase method.

Line 53: Return the changed scale base value.

4.2.1.4 Condition Value Formula (VAL)
This userexit can be used to replace the automatically determined condition value. This kind of userexits must be
assigned, in the customizing, to the userexits type VAL – Condition Value Formula.

This userexit is called after the calculation of the condition value for each pricing condition. The userexit class must be
inherited from the class ValueFormulaAdapter and overwrites at least overwriteConditionValue. If group condition
processing for that condition type is enabled, also the overwriting of method overwriteGroupConditionValue is
possible. Both methods can return null to indicate that the original value shall not be changed.

ZSpecialRoundingValueFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;
import com.sap.spe.conversion.ICurrencyValue;
import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.ValueFormulaAdapter;

public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =
 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,
 IPricingConditionUserExit condition) {
 BigDecimal result;

 ICurrencyValue val = condition.getConditionValue();

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

24

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 userexitlogger.writeLogDebug("old cond value: "
 + val.getValueAsString());

 result = val.getValue().setScale(0, BigDecimal.ROUND_HALF_UP);

 BigDecimal qnt = item.getProductQuantity().getValue();
 qnt = qnt.divide(new BigDecimal("100"), 2, BigDecimal.ROUND_HALF_UP);

 userexitlogger.writeLogDebug("new cond value: " + result.subtract(qnt));

 return result.subtract(qnt);
 }

 public BigDecimal overwriteGroupConditionValue(
 IPricingDocumentUserExit item, IGroupConditionUserExit condition) {
 // do nothing
 return null;
 }
}

Line 13: Inherit from the API class ValueFormulaAdapter.

Line 18: Overwrite the implementation of the overwriteConditionValue method.

Line 33: Return the changed condition value.

Line 36: Overwrite the implementation of the overwriteGroupConditionValue method.

Line 39: Return null to keep the automatically calculated value.

4.2.1.5 Copy Formula (CPY)
While copying a document the pricing condition can be fixed or other changes can take place if needed. This kind of
userexits must be assigned, in the customizing, to the userexits type CPY – Copy Formula.

This userexit is called during the copy process. The userexit class must be inherited from the class
PricingCopyFormulaAdapter and overwrite the method pricingCopy. The parameters pricingDocument, pricingItem
and pricingCondition are references to the target document, item and condition. For each condition this method is
called. The pricing type describes what should happen with the pricing result when a new pricing takes place. The
parameter copyType is a reference to the used customizing for that copy process and the sourceSalesQuantity contains
the old quantity of the source item.

ZSpecialCopyFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

package your.company.pricing.userexits;

import com.sap.spe.conversion.IQuantityValue;
import com.sap.spe.pricing.customizing.ICopyType;
import com.sap.spe.pricing.customizing.IPricingType;
import com.sap.spe.pricing.customizing.PricingCustomizingConstants;
import com.sap.spe.pricing.transactiondata.PricingTransactiondataConstants;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingCopyFormulaAdapter;

public class ZSpecialCopyFormula extends PricingCopyFormulaAdapter {

/**
 * Purpose: This is an example of a pricing copy formula. A pricing copy
 * formula is assigned to a condition type in the customizing and alters
 * the value that the system uses to read the scales in a condition
 * record.
 *
 *
 * Example: A customer sends back one of the ordered items of an already
 * paid-for sales order. during the copy process the conditions should be
 * fixed and their sign should be inverted. Except for the freight costs.
 *
 */
public void pricingCopy(IPricingDocumentUserExit pricingDocument,

IPricingItemUserExit pricingItem,
IPricingConditionUserExit pricingCondition,
IPricingType pricingType, ICopyType copyType,
IQuantityValue sourceSalesQuantity) {

PRICING USEREXIT MANUAL 25

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// set condition control (KSTEU) to 'H'
pricingCondition.setConditionControl(

PricingCustomizingConstants.Control.VALUE_FIXED_FOR_COST_PRICE);

// invert condition value
pricingCondition

.setConditionValue(pricingCondition.getConditionValue()
.getValue().multiply(

PricingTransactiondataConstants.MINUS_ONE));

// invert condition base for percentage conditions that it looks
// consistent on the condition screen
if (PricingCustomizingConstants.CalculationType

.isFixedAmountOrPercentage(pricingCondition
.getCalculationType())) {

pricingCondition.setConditionBaseValue(pricingCondition
.getConditionBase().getValue().multiply(

PricingTransactiondataConstants.MINUS_ONE));
}

}
}

Line 13: Inherit from the API class PricingCopyFormulaAdapter.

Line 15: Overwrite the implementation of the pricingCopy method.

4.2.1.6 Group Key Formula (GRP)
This seldom used userexit influences the grouping of group conditions (conditions that will be processed together over
more than one item). This kind of userexits must be assigned, in the customizing, to the userexits type GRP – Group
Key Formula.

This userexit is called when the key of a group condition is determined .The userexit class must be inherited from the
class GroupKeyFormulaAdapter and overwrite the method setGroupKey. The method determines from the different
passed object references a String which will be used for the grouping rule of group conditions. Different string values
for two conditions will result that the two conditions will never form one group.

ZSpecialGroupKeyFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.GroupKeyFormulaAdapter;
import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

public class ZSpecialGroupKeyFormula extends GroupKeyFormulaAdapter {
/**
 * Purpose: This is an example of a group key formula. A group key formula
 * can be used to influence the basis the system uses when reading the scale
 * of a group condition. The formula is assigned to a group condition type
 * in customizing.
 *
 * This Formula adds up the quantities / values of all of the line items in
 * the sales document independent of which condition types have been
 * applied.
 *
 * Example: A company defines their prices with scales based on weight. When
 * a sales order line item is priced, the user would like the system to read
 * the scale with not just the weight of the current line item, but the
 * combined weight of all items in the sales document. To accomplish this,
 * the user defines their price condition types as group conditions and
 * assigns this group key formula to them in customizing.
 *
 */
public String setGroupKey(IPricingDocumentUserExit document,

IPricingItemUserExit item, IPricingConditionUserExit condition,
IGroupConditionUserExit groupCondition) {

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

26

31
32
33
34

groupCondition.setConditionTypeName("++++");
return "002";

}
}

Line 9: Inherit from the API class GroupKeyFormulaAdapter.

Line 28: Overwrite the implementation of the setGroupKey method.

Line 31: Set all group conditions using this formula the condition type name to “++++” to avoid a splitting because of
different condition type names.

Line 32: Set the conditions group key to the group key “002”.

4.2.2 Userexits with Multiple Active Implementations

4.2.2.1 Pricing Init (PRI)
In previous releases this userexit was called CRMDocumentStandardExit. There it was mainly used to pass header
attributes to be used in the method initializeDocument. As of 5.0 such attributes can be customized as described in
chapter 3.1. Pricing Init userexit can now only be used to set the rounding unit to the smallest unit of the document
currency. This kind of userexit must be assigned, in the customizing, to the userexit type PRI – Pricing Init.

This userexit is called when a new pricing document is created. The userexit class must be inherited from the class
PricingInitFormulaAdapter and must overwrite the method initializeDocument. This method has the parameter
documentUserExitAccess which represents the pricing document.

ZPricingInit
1
2
3
4
5
6
7
8
9

10
11
12
16
14
15
16
17
18
19

package your.company.pricing.userexits;

import com.sap.spe.document.userexit.IDocumentUserExitAccess;
import com.sap.spe.document.userexit.PricingInitFormulaAdapter;

public class ZPricingInit extends PricingInitFormulaAdapter {
/**
 * Example: In case the document currency is Swiss Frank,
 * set the rounding unit to 5 (so called “rappen rounding”)
 */
public void initializeDocument(

IDocumentUserExitAccess documentUserExitAccess) {

if (documentUserExitAccess.getDocumentCurrency()
.getUnitName().equals("CHF")) {
documentUserExitAccess.setUnitToBeRoundedTo(5);

}
}

}

Line 6: Inherit from the API class PricingInitFormulaAdapter.

Line 11: Overwrite the implementation of the initializeDocument method.

Line 16: Set the rounding unit of the CHF currency to 0.05 (there always a factor of 100).

4.2.2.2 Pricing Prepare (PRP)
In previous releases this userexits was called CRMItemStandardExit. Pricing Prepare userexits can be used to add
header and/or item attributes to be used during the pricing process. Such attributes can be customized as described in
chapter 3.1. This kind of userexits must be assigned, in the customizing, to the userexits type PRP – Pricing Prepare.

Pricing Prepare userexit is called when creating a new pricing item and when a new pricing takes place. The userexit
class must be inherited from the class PricingPrepareFormulaAdapter and must overwrite the method
addAttributeBindings. This method has the parameter itemUserExitAccess which represents the pricing item.

ZPricingPrepare
1
2
3
4
5

package your.company.pricing.userexits;

import com.sap.spe.document.userexit.IItemUserExitAccess;
import com.sap.spe.document.userexit.PricingPrepareFormulaAdapter;

PRICING USEREXIT MANUAL 27

6
7
8
9

10
11
12

public class ZPricingPrepare extends PricingPrepareFormulaAdapter {

public void addAttributeBindings(IItemUserExitAccess itemUserExitAccess) {
// bound attribute ZLAND to value DE
itemUserExitAccess.addAttributeBinding("ZLAND", "DE");

}
}

Line 6: Inherit from the API class PricingPrepareFormulaAdapter.

Line 8: Overwrite the implementation of the addAttributeBindings method.

Line 10: Set the attribute ZLAND to the value “DE”. ZLAND is a symbolic (internal) attribute name, not to been
mixed up with a field from the communication structure (field catalogue).

4.2.3 Userexits with one unique implementation

4.2.3.1 Item Calculation Begin Formula (CAB)
This seldom used userexit is available to change the document and item if necessary before the item pricing takes place.
It corresponds to the R/3 userexit userexit_xkomv_bewerten_init (include:RV61AFZB). This kind of
userexits must be assigned, in the customizing, to the userexits type CAB – Item Calculation Begin formula.

The userexit class must be inherited from PricingItemCalculateBeginFormulaAdapter. It gets a reference to the
pricing document (prDocument) and the item (prItem).

ZSpecialCalculationBeginFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingItemCalculateBeginFormulaAdapter;

public class ZSpecialCalculationBeginFormula extends PricingItemCalculateBeginFormulaAdapter
{

public void calculationBegin(IPricingDocumentUserExit prDocument,
IPricingItemUserExit prItem) {

[your coding]

}
}

Line 7: Inherit from the API class PricingItemCalculateBeginFormulaAdapter.

Line 10: Overwrite the implementation of the calculationBegin method.

4.2.3.2 Item Calculation End Formula (CAE)
This seldom used userexit is available to change the document and item if necessary after the item pricing took place. It
corresponds to the R/3 userexit userexit_xkomv_bewerten_end (include: RV61AFZB). This kind of userexits
must be assigned, in the customizing, to the userexits type CAE – Item Calculation End formula. The userexit class
must be inherited from PricingItemCalculateEndFormulaAdapter. It gets a reference to the pricing document
(prDocument) and the item (prItem).

ZSpecialCalculationEndFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingItemCalculateEndFormulaAdapter;

public class ZSpecialCalculationEndFormula extends PricingItemCalculateEndFormulaAdapter {

private int stepNumber, counter;

public void calculationEnd(IPricingDocumentUserExit prDocument,
IPricingItemUserExit prItem) {

[your coding]

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

28

15
16
17

}
}

Line 7: Inherit from the API class PricingItemCalculateEndFormulaAdapter.

Line 11: Overwrite the implementation of the calculationEnd method.

4.2.3.3 Condition Init Formula (CNI)
After initializing a pricing condition, the pricing condition can be changed using this userexit which is called whenever
an internal condition (a transactional object or business entity) is created. This kind of userexits must be assigned, in the
customizing, to the userexits type CNI – Condition Init Formula.

The userexit class must be inherited from PricingConditionInitFormulaAdapter and must overwrite the method init.
It allows changing the newly create condition (parameter prCondition).

ZSpecialConditionInitFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingConditionInitFormulaAdapter;

public class ZSpecialConditionInitFormula extends PricingConditionInitFormulaAdapter {

public void init(IPricingDocumentUserExit prDocument, IPricingItemUserExit prItem,
IPricingConditionUserExit prCondition) {

[your coding]

}
}

Line 10: Inherit from the API class PricingConditionInitFormulaAdapter.

Line 12: Overwrite the init method.

4.2.3.4 Item Init Formula (ITI)
After the pricing Item is initialized, the pricing item can be changed using this userexit which is called when a new
pricing item is created. This kind of userexits must be assigned, in the customizing, to the userexits type ITI – Item Init
Formula.

The userexit class must be inherited from the class PricingItemInitFormulaAdapter and implement the method init.
A reference to the document and to the newly created item is passed.

ZSpecialItemInitFomula
1
2
3
4
5
6
7
8
9

10
11
12
13
14

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingItemInitFormulaAdapter;

public class ZSpecialItemInitFomula extends PricingItemInitFormulaAdapter {

public void init(IPricingDocumentUserExit prDocument, IPricingItemUserExit prItem) {

[your coding]

}
}

Line 7: Inherit from the API class PricingItemInitFormulaAdapter.

Line 9: Overwrite the implementation of the init method.

4.2.3.5 Document Init Formula (DOI)

PRICING USEREXIT MANUAL 29

After initializing a pricing document, the document can be changed using this userexit which is called when a new
pricing document is created. This kind of userexits must be assigned, in the customizing, to the userexits type DOI –
Document Init Formula.

The userexit class must be inherited from the class PricingDocumentInitFormulaAdapter and implement the method
init. A reference to the newly created document is passed

ZSpecialDocumentInitFormula
1
2
3
4
5
6
7
8
9

10
11
12
13

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;
import com.sap.spe.pricing.transactiondata.userexit.PricingDocumentInitFormulaAdapter;

public class ZSpecialDocumentInitFormula extends PricingDocumentInitFormulaAdapter {

public void init(IPricingDocumentUserExit prDocument) {

[your coding]

}
}

Line 6: Inherit from the API class DocumentInitFormula.

Line 8: Overwrite the implementation of the init method.

4.2.3.6 Configuration Formula (CFG)
This seldom used userexit will be called when the process of product configuration creates subitems. This kind of
userexits must be assigned, in the customizing, to the userexits type CFG – Configuration Formula (called for sub items
created by SCE).

The userexit class must be inherited from SPCSubItemCreatedByConfigurationFormulaAdapter. For each subitem the
method isRelevantForPricing is called and a reference to the newly created subitem and the configuration instance is
passed in.

ZSpecialConfigurationFormula
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package your.company.pricing.userexits;

import com.sap.spc.document.userexit.ISPCItemUserExitAccess;
import com.sap.sce.front.base.Instance;
import com.sap.spc.document.userexit.SPCSubItemCreatedByConfigurationFormulaAdapter;

public class ZspecialConfigurationFormula
extends SPCSubItemCreatedByConfigurationFormulaAdapter {

/**
 * All configuration sub items are pricing relevant
 */
public boolean isRelevantForPricing(ISPCItemUserExitAccess subItem,

Instance instance) {
return true;

}
}

Line 8: Inherit from the API class SPCSubItemCreatedByConfigurationFormulaAdapter.

Line 10: Overwrite the isRelevantForPricing method.

Line 15: Set the configuration subItem to pricing relevant by returning true.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

30

5 DEBUGGING

5.1 Set VMC in Debug Mode
The logical application server is usually hosted on different servers and load balanced via the message server. To debug
the VMC the user has to know on which host his work process run. In the SAPGUI menu System -> Status… the Server
name (first part) is displayed. On the next page (3rd button) also the corresponding IP address is given. Switching
between hosts of one server can be done via transaction sm51.

Run transaction sm52 to display the available VMCs. This window will later show the servers running virtual machines
and also the debug state and port of each one.

A VMC work process switches into debug mode when a program flow from ABAP to Java (RFC function module) is
passed and ABAP was in debug mode (with /h). To help debugging each call of such a pricing RFC module a
conditional breakpoint triggered. To active the breakpoint the user parameter PRC_RFC has to be set to X (transaction
su3).

While running the transaction (e.g. order processing) each call to pricing will hold and with a step-into debugging into
the RFC module (F5) a VMC debug port will be activated. This VMC will stay attached as long the ABAP transaction
runs.

5.2 Attach Eclipse Java Debugger
After a VMC work process has an open debug port, which can be viewed with transaction sm52, the eclipse debugger
can be attached to it.

Because attaching the debugger to the VMC will run directly the code, first interesting java breakpoint may be set.
Attaching eclipse works then as follow:

1. Open menu Run->Debug…

2. Create a new Remote Java Application Configuration

3. Enter as host the server where the VMC work process is running on

4. Enter the debug port as the one VMC work process debug port shown in transaction sm52

5. Click on Debug

The debugging view will normally popup automatically and a successful attachment will show all working threads of
that VMC work process.

5.3 View VMC Log Files
First the logging must be switched on for a specific java class or package. Transaction sm53 starts the VMC System
Administration. On the left side the branch Log Administration the node Log Configuration is shown. The displayed
view allows the entering of a Location and Category. In case of the UserexitLogger the Location is the full name of the
userexit class name, e.g. your.company.pricing.userexits.ZSpecialRoundingValueFormula. The Severity is
depending on which UserexitLogger method is used. ALL includes logging independent of their severity levels;
DEBUG contains also logging done for ERROR severity.

With Copy button the logging level is directly set for all VMC work processes on that application server. The Reset
button set the default for the selected classes or packages.

To include all logging done in the userexits the logging can also be switched on for packages, e.g.
your.company.pricing. If entered in the Location or Category field, the severity level is set for all classes of that
package and all classes of sub packages.

PRICING USEREXIT MANUAL 31

Now the log files are activated and traces depending on the settings.

The log can now be checked with the same transaction sm53. The log viewer is started by clicking the navigation menu
entry Log Display onto Log Administration. The root node in log selection (lower left box) has to be switched on. On
the right side all messages are shown and details in the lower right box. The log entries can also be filtered by different
criteria such as Severity, Log Name (which is the class name or package) or User.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

32

6 UPGRADE GUIDE
This chapter is intended to help upgrading IPC 3.0 and IPC 4.0 pricing userexits to the new AP 7.00 architecture. It
refers to all chapters before. As an example, an old IPC 4.0 PricingUserExits.java file is taken and converted.

This is an excerpt of the pricing userexit.
(IPC 4.0) PricingUserExits.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

package userexits;

[..]
import java.math.BigDecimal;

public class PricingUserExits
 implements IPricingUserExits
{

[..]
 public boolean checkRequirement(IConditionFindingManagerUserExit item,
 IStep step, int reqNo)
 throws SXERuntimeException
 {
 switch(reqNo)
 {
 case 700: {
 String zland = null;
 try {
 zland = item.getHeaderAttributeValue("ZLAND").getValue();
 } catch(Exception ex) {
 zland = new String();
 }
 return zland != null && !zland.equals("US") && !zland.equals("CA");
 }
 case 701: {
 String itemCategory = null;
 boolean priceRelevant = false;
 try {
 itemCategory = item.getItemAttributeValue("ZITMCAT").getValue();
 String priceIndicator = item.getItemAttributeValue(
 AttributeNames.pricingIndicator).getValue();
 priceRelevant = priceIndicator != null && priceIndicator.equals("X");
 }
 catch(Exception ex) {
 itemCategory = new String();
 }
 return priceRelevant && itemCategory != null &&
 (itemCategory.equals("TANN") || itemCategory.equals("ZTNN"));
 }
[..]
 default: {
 throw new SXERuntimeException("Error in user exit: no condition "+
 "found for requirement number" + reqNo + ".");
 }
 }
 }

 public BigDecimal overwriteConditionBase(IPricingItemUserExit prItem,
 ILastPrice lastPrice, IPricingConditionUserExit prCondition, int baseFormNo)
 throws SXERuntimeException
 {
 switch(baseFormNo)
 {
 case 710:
 return prItem.getNetPrice();
 default:
 throw new SXERuntimeException("Error in user exit: no coding "+
 "found for base formula number" + baseFormNo + ".");
 }
 }

 public BigDecimal overwriteConditionValue(IPricingItemUserExit prItem,

PRICING USEREXIT MANUAL 33

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

 ILastPrice lastPrice, IPricingConditionUserExit prCondition, int valueFormNo)
 {
 switch(valueFormNo)
 {
 case 720:
 try {
 boolean isCanada = prItem.getHeaderAttributeValue(
 AttributeNames.taxDepartCty).getValue().startsWith("CA");
 if(!isCanada)
 return new BigDecimal(0.0d);
 }
 catch(UnsuppliedAttributeException e) {
 return new BigDecimal(0.0D);
 }
 default:
 throw new SXERuntimeException("Error in user exit: no coding "+
 "found for value formula number" + valueFormNo + ".");
 }
 }

[..]

 public String[] determineRelevantAttributesForRequirement(
 boolean headerAttributes, int reqNo)
 {
 String relevantAttributes[] = new String[0];
 if(headerAttributes)
 switch(reqNo)
 {
 case 700:
 relevantAttributes = (new String[] { "ZLAND" });
 break;
 }
 else
 switch(reqNo)
 {
 case 701:
 relevantAttributes = (new String[] {
 "ZITMCAT", AttributeNames.pricingIndicator });
 break;
 }
 return relevantAttributes;
 }

 public String[] determineRelevantAttributesForBaseFormula(
 boolean headerAttributes, int baseFormulaNo)
 {
 return null;
 }

 public String[] determineRelevantAttributesForValueFormula(
 boolean headerAttributes, int valueFormulaNo)
 {
 String relevantAttributes[] = new String[0];
 if(headerAttributes)
 switch(valueFormulaNo)
 {
 case 720:
 relevantAttributes = (new String[] {
 AttributeNames.taxDepartCty });
 break;
 }
 return relevantAttributes;
 }

[..]

 public int[] getRequirementNumbers()
 {
 return (new int[] { 700, 701 });
 }

 public int[] getConditionBaseFormulaNumbers()
 {
 return (new int[] { 710 });
 }

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

34

141
142
143
144
145

 public int[] getConditionValueFormulaNumbers()
 {
 return (new int[] { 720 });
 }
}

The above pricing userexits shows a common customer implementation. Implemented are:

700. Requirement: Checks if the header (document) attribute ZLAND is neither US nor CA.

701. Requirement: Checks if the item attribute ZITMCAT is either “ZTAN” or “ZTNN” and the item attribute
PRICING_INDICATOR is “X”.

710. Base value formula: Sets the base and also the condition value to the item’s net price (net price calculated at
the time the base value formula is called).

720. Condition value formula: Sets the condition value to 0 if the header (document) attribute
TAX_DEPART_CTY is not CA.

All required attributes with the corresponding determineRelevantAttributes-methods and all implemented formula
number are shown.

6.1 Preparation
As of AP700 each userexit formula is implemented in an own java class which must be registered in the system as
described in chapter 3. Some preparation steps make it easier to implement and adopt the userexits.

Setup the development environment as described in chapter 2 and read the explanations provided there.

Find a descriptive name for the functionality achieved with each formula.
Formula Name Description

700 Req ZLANDUSCA Checks if ZLAND is neither “US” nor “CA”

701 Req ZITMCAT Checks if ZITMCAT is “ZTAN” or “ZTNN” and for active pricing
indicator

710 Base ZSETNETP Sets the base of the condition to the item’s net price
720 Value ZTAXDEPCA Sets the value of the condition to 0 if the departure country is not Canada

Collect for each formula the used header (document) and item attributes.
Formula Name H/I Description

700 Req ZLAND Header Country of the last depot
701 Req ZITMCAT Item Item Category
701 Req PRICING_INDICATOR Item Pricing Indicator
720 Value TAX_DEPART_CTY Header Tax Departure Country

Define a java package structure or a simple package name along with the class name for the implementation.
Formula Name Class

700 Req ZLANDUSCA your.company.pricing.req.Zland

701 Req ZITMCAT your.company.pricing.req.Zitmcat

710 Base ZSETNETP your.company.pricing.base.Zsetnetp

720 Value ZTAXDEPCA your.company.pricing.value.Ztaxdepca

6.2 Implementation
Next step is to create each userexit and adapt the coding to implement the adapter’s methods. For each kind of userexit
an adapter must be inherited, more information is provided in chapter 4.

Create new empty classes which inherit from the appropriate adapter class (depending on the type of the
userexit).

PRICING USEREXIT MANUAL 35

Override necessary methods and fill in the coding parts which were formally (and usually) in the switch-case
of the old implementation.

Some adaptations have to been made because parameters names and other references might have changed.

The four resulting userexits may look like these:
your.company.pricing.req.Zland

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

package your.company.pricing.req;

import com.sap.spe.base.logging.UserexitLogger;
import com.sap.spe.condmgnt.customizing.IAccess;
import com.sap.spe.condmgnt.customizing.IStep;
import com.sap.spe.condmgnt.finding.userexit.IConditionFindingManagerUserExit;
import com.sap.spe.condmgnt.finding.userexit.RequirementAdapter;

public class Zland extends RequirementAdapter {

 private static UserexitLogger uelogger =
 new UserexitLogger(Zland.class);

 public boolean checkRequirement(IConditionFindingManagerUserExit item,
 IStep step, IAccess access)
 {
 String zland = item.getAttributeValue("ZLAND");
 if (zland.equals("")) {
 uelogger.writeLogError("ZLAND attribute missing");
 return false;
 } else {
 return !zland.equals("US") && !zland.equals("CA");
 }
 }
}

your.company.pricing.req.Zitmcat
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

package your.company.pricing.req;

import com.sap.spe.base.logging.UserexitLogger;
import com.sap.spe.condmgnt.customizing.IAccess;
import com.sap.spe.condmgnt.customizing.IStep;
import com.sap.spe.condmgnt.finding.userexit.IConditionFindingManagerUserExit;
import com.sap.spe.condmgnt.finding.userexit.RequirementAdapter;

public class Zitmcat extends RequirementAdapter {

 private static UserexitLogger uelogger =
 new UserexitLogger(Zitmcat.class);

 public boolean checkRequirement(IConditionFindingManagerUserExit item,
 IStep step, IAccess access)
 {
 String itemCategory = item.getAttributeValue("ZITMCAT");
 String priceIndicator = item.getAttributeValue("PRICING_INDICATOR");
 boolean priceRelevant = priceIndicator.equals("X");

 if (itemCategory.equals("")) {
 uelogger.writeLogError("ZITMCAT attribute missing");
 return false;
 }

 return priceRelevant &&
 (itemCategory.equals("TANN") || itemCategory.equals("ZTNN"));
 }
}

your.company.pricing.base.Zsetnetp
1
2
3
4
5
6
7

package your.company.pricing.base;

import java.math.BigDecimal;

import com.sap.spe.pricing.transactiondata.userexit.BaseFormulaAdapter;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

36

8
9

10
11
12
13
14
15

public class Zsetnetp extends BaseFormulaAdapter {

 public BigDecimal overwriteConditionBase(IPricingItemUserExit pricingItem,
 IPricingConditionUserExit pricingCondition) {
 return pricingItem.getNetPrice().getValue();
 }
}

your.company.pricing.value.Ztaxdepca
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

package your.company.pricing.value;

import java.math.BigDecimal;

import com.sap.spe.pricing.customizing.PricingCustomizingConstants;
import com.sap.spe.pricing.transactiondata.PricingTransactiondataConstants;
import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;
import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;
import com.sap.spe.pricing.transactiondata.userexit.ValueFormulaAdapter;

public class Ztaxdepca extends ValueFormulaAdapter {

public BigDecimal overwriteConditionValue(IPricingItemUserExit pricingItem,
IPricingConditionUserExit pricingCondition) {

String taxdepcty = pricingItem.getAttributeValue("TAX_DEPART_CTY");
if (taxdepcty.equals("")) {

// INACTIVE_DUE_TO_ERROR = X
pricingCondition

.setInactive(PricingCustomizingConstants.InactiveFlag.INACTIVE_DUE_TO_ERROR);
}
boolean isCanada = taxdepcty.equals("CA");
if (!isCanada)

return PricingTransactiondataConstants.ZERO;
// keep the automatically calculated Condition Value
return null;

}
}

Compile the java sources and create the jar package per the description in chapter 2 and chapter 2.6.

6.3 Register and Assign the Userexit
Use the following steps to register your classes.

Start transaction /n/SAPCND/UEASS.

Enter the right usage for your implementation (in this case PR – pricing).

For the Requirement formula select the userexit type REQ and click on implementations.

Create a new entry and enter the following details:

o In the field “Userexit Name” type in the chosen userexit name (e.g. ZLANDUSCA)

o In the field “Userexit Class” type in the fully qualified class name (e.g.
your.company.pricing.req.Zland)

o In the field “Userexit Descr.” type in a meaningful description.

Assign the attributes used in the formula implementation by

o selecting the newly entered userexit and by going to implementations attributes

o and entering the required attributes along with a meaningful description (e.g. ZLAND Country of the
last depot).

Assign formula numbers to the userexit implementation. E.g. 700 for ZLANDUSCA.

Map the relevant attributes to the catalogue field names. E.g. ZLAND with ZLAND.

PRICING USEREXIT MANUAL 37

6.4 Uploading and Testing
Now it’s time to upload the compiled and packaged implementation into the system’s DB. Use the steps described in
chapter 2.7.

After the implementation has been uploaded and the customizing has been completed the userexits are now ready for
use.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

38

7 INTERFACES AND INCOMPATIBLE CHANGES

7.1 Interface Packages
This chapter describes the interfaces that can be used in 5.0 userexits. Each package that ends with “userexit” is an
interface package that can be used for userexits implementations.

7.1.1 Condition Finding Interfaces

com.sap.spe.condmgnt.finding.userexit:

IConditionFindingManagerUserExit: it provides information required for the search of
condition records such as Attributes. This interface is relevant for implementing requirements.

7.1.2 Pricing Interfaces

com.sap.spe.pricing.transactiondata.userexit: All the pricing related userexits APIs are part of
this package

IPricingDocumentUserExit: The pricing document contains accumulated pricing information of all
pricing items and provides methods which are processing all pricing items. The methods of this interface
can be used in the pricing userexits.

IPricingItemUserExit: The pricing item contains accumulated pricing information of all pricing
conditions and provides methods which are working on all pricing condition of this pricing item. The
methods of this interface can be used in the pricing userexits.

IPricingConditionUserExit: A pricing condition contains information copied from the pricing
knowledge base (from the customizing of the condition type and the pricing procedure), from the condition
record, and from the result of the calculation. The methods of this interface can be used in the pricing
userexits.

ILastPriceUserExit: Interface for last price object. The last price is determined for each pricing item
and available in some pricing userexits. It corresponds to the pricing condition which holds the last price on
the pricing item.

com.sap.spe.pricing.customizing:

PricingCustomizingConstants: contains useful constants for the pricing condition properties
such as calculation type …etc.

com.sap.spe.pricing.transactiondata:

PricingTransactiondataConstants: contains useful constants for often used BigDecimal
values such as zero.

7.1.3 Document (Sales/Purchase Order) Interfaces

com.sap.spe.document.userexit:

IDocumentUserExitAccess: Provides basic functionalities on document level (Sales Order) that are
required to perform pricing.

IItemUserExitAccess: Provides basic functionalities on Item level (Sales Order Item) that are
required to perform pricing.

com.sap.spc.document.userexit:

PRICING USEREXIT MANUAL 39

ISPCDocumentUserExitAccess: Similar to IDocumentUserExitAccess.

ISPCItemUserExitAccess: Similar to IItemUserExitAccess. Additionally a method is
provided to access the product configuration.

PRICING USEREXIT MANUAL 41

7.2 Incompatible Interface Changes to earlier releases

7.2.1 IConditionFindingManagerUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.condmgnt.finding.application

Now is part of
com.sap.spe.condmgnt.f
inding.userexit

getClient() Removed Alternatively use

com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getClient();

getHeaderAttributeBinding(IAttributeClass)

getHeaderAttributeBinding(String)

getHeaderAttributeValue(String)

getItemAttributeBinding(IAttributeClass)

getItemAttributeBinding(String)

getItemAttributeValue(String)

Removed Alternatively use getAttributeValue(String) which now returns a
String instead of an IAttributeBinding or IAttributeValue.

Additionally, there is no differentiation between Header and Item Attributes in
the Userexits.

Consider that getAttributeValue(String) no longer throws an
UnsuppliedAttributeException. In case the Attribute is not
supplied, an empty string is returned.

Earlier it was possible to return a NULL value. In AP700 it is guaranteed that no
NULL value is returned.

getConditionAccessTimestamp(String)

getDefaultConditionAccessTimestamp()

Removed Alternatively use an Attribute in the method
getAttributeValue(String)

7.2.2 IPricingDocumentUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.pricing.transactiondata.applicatio
n

Now is part of
com.sap.spe.pricing.tr
ansactiondata.userexit

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

42

getLocale()

getLanguage()

Removed Alternatively, to get the language use

com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getLocaleSettings().getLanguage();

getMessageManager() Removed

getStandardExits()

getStandardExitsForIBUs()

Removed

getUserExitConditions() The return type changed from
Vector to
IPricingConditionUserE
xit[]

getUserExitItems() The return type changed from
Vector to
IPricingItemUserExit[]

getAlwaysPerformGroupConditionProcessing() isAlwaysPerformingGrou
pConditionProcessing()

getKeepZeroPricesActive() isZeroPriceActive()

getPartialProcessing() isPartialProcessing()

7.2.3 IPricingItemUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.pricing.transactiondata.applicatio
n

Now is part of
com.sap.spe.pricing.tr
ansactiondata.userexit

getConditionsForCumulation() The return type changed from
SortedSet to
IPricingConditionUserE
xit[]

getUserExitConditions() The return type changed from
Vector to
IPricingConditionUserE
xit[]

PRICING USEREXIT MANUAL 43

getAccumulatedValuesForConditionsWithPurpose()

getDynamicReturnValues()

getSubtotals()

The return type changed from
HashTable to Map

getCashDiscount()

getCashDiscountBasis()

getFreight()

getNetPrice()

getNetValueWithoutFreight()

getSubtotal(char)

The return type changed from
BigDecimal to
ICurrencyValue

getConditionsWithoutInvisible() Removed Alternatively use getUserExitConditions()

getDocument() Removed Alternatively use getUserExitDocument()

getErrorMessage() Removed Functionality was not implemented even in earlier releases.

getIsReturn() isReturn()

getIsStatistical() isStatistical()

getItemId() getId()

getNumberOfVisibleConditions() Removed Alternatively use getUserExitConditions().length

getPricingTimestamp() Removed Alternatively use getConditionFindingTimestamp() on the
IPricingConditionUserExit object

getSalesQuantity() getProductQuantity()

isHighLevelItem() Removed Alternatively check if getHighLevelItemUserExit() == null

7.2.4 IPricingConditionUserExit and IGroupConditionUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.pricing.transactiondata.applicatio
n

Now is part of
com.sap.spe.pricing.tr
ansactiondata.userexit

getConditionUpdate() isConditionUpdate()

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

44

getCurrencyConversion() isCurrencyConversion()

getDeletionAllowed() isDeletionAllowed()

getHeaderConditionFlag() isHeaderCondition()

getIndicatorStructureCondition() getStructureConditionF
lag()

getInterCompanyFlag() isInterCompanyBilling(
)

getInvoiceListFlag() isInvoiceList()

getItemConditionFlag() isItemCondition()

getPricingUnit() The return type changed from
IDimensionalValue to
IPhysicalValue

getPurpose() The return type changed from
String to
IConditionPurpose

getRoundingDifference_Locale() Removed Alternatively use getRoundingDifference().toString()

getSalesTaxCode() getTaxCode()

getStatistical() isStatistical()

getStepNo() getStepNumber()

getVariantFlag() isVariantCondition()

getVarnumh() getConditionRecordId()

hasBeenChangedManually() isManuallyChanged()

7.2.5 ILastPrice
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.pricing.transactiondata.applicatio
n

Now is part of package

com.sap.spe.pricing.tr
ansactiondata.userexit

The Interface is renamed to ILastPriceUserExit

PRICING USEREXIT MANUAL 45

getVarnumh() getConditionRecordId()

getStepNo() getStepNumber()

7.2.6 IDocumentUserExitAccess
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spe.document Now is part of
com.sap.spe.document.u
serexit

addHeaderAttributeBinding(IAttributeClass)

addHeaderAttributeBinding(IAttributeClass,
IAttributeValue)

addHeaderAttributeBinding(IAttributeClass,
IAttributeValue[])

addHeaderAttributeBinding(String)

addHeaderAttributeBinding(String, String)

addHeaderAttributeBinding(String, String[])

Removed Alternatively use addAttributeBinding(String, String[])

getHeaderAttributeBinding(IAttributeClass)

getHeaderAttributeBinding(String)

Removed Alternatively use getAttributeBinding(String)

getHeaderAttributeEnvironment() Removed Alternatively use getAttributeEnvironment()

getLocale() Removed Alternatively, to get the language use

com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getLocaleSettings().getLanguage();

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

46

getRelevantHeaderAttributes()

getRelevantItemAttributes()

Removed Alternatively use

com.sap.spe.document.DocumentEngineFactory.
getFactory().getDocumentEngine().getRelevantAttribute
s(
documentUserExitAccess.getPricingProcedure().getAppli
cation(),
documentUserExitAccess.getPricingProcedure().getUsage
(),
documentUserExitAccess.getPricingProcedure().getName(
));

isHeaderAttributeRelevantForPricing(String)

isItemAttributeRelevantForPricing(String)

isAttributeRelevantFor
Pricing(String)

setHeaderAttributeEnvironment(IAttributeBindin
g[])

Removed Alternatively use addAttributeBinding(String, String[]) in a
loop

7.2.7 IItemUserExitAccess
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spe.document Now is part of
com.sap.spe.document.u
serexit

addHeaderAttributeBinding(IAttributeClass)

addHeaderAttributeBinding(IAttributeClass,
IAttributeValue)

addHeaderAttributeBinding(String)

addHeaderAttributeBinding(String, String)

addItemAttributeBinding(IAttributeClass)

addItemAttributeBinding(IAttributeClass,
IAttributeValue)

addItemAttributeBinding(String)

addItemAttributeBinding(String, String)

Removed Alternatively use

addAttributeBinding(String, String)

addAttributeBinding(String, String[])

PRICING USEREXIT MANUAL 47

addVariantCondition(String, String, String) addVariantCondition(St
ring, double, String)

Convert the String to double before calling the method

getHeaderAttributeBinding(IAttributeClass)

getHeaderAttributeBinding(String)

getItemAttributeBinding(IAttributeClass)

getItemAttributeBinding(String)

Removed Alternatively use getAttributeBinding(String)

getPricingTimestamp() Removed

getSalesQuantity()

getSalesQuantityUnit()

Removed Alternatively use

getProductQuantity()

getProductQuantity().getUnit()

isHeaderAttributeRelevantForPricing(String)

isItemAttributeRelevantForPricing(String)

isAttributeRelevantFor
Pricing(String)

isHeaderAttributeSetExplicitly(String)

isItemAttributeSetExplicitly(String)

isAttributeSetExplicit
ly(String)

removeVariantCondition(IVariantCondition) removeVariantCondition
(String)

7.2.8 ISPCDocumentUserExitAccess
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spc.base Now is part of
com.sap.spc.document.u
serexit

getDistributionChannel()

getSalesOrganization()

getSessionType()

Removed Earlier those methods were required to read the product sales data which is no
longer required in this release.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

48

7.2.9 ISPCItemUserExitAccess
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spc.base Now is part of
com.sap.spc.document.u
serexit

7.2.10 IPricingUserExits
Earlier Release Changes in AP 7.00 Comments

Was part of package
com.sap.spe.pricing.transactiondata.applicatio
n

Now is part of package

com.sap.spe.condmgnt.f
inding.userexit

com.sap.spe.pricing.tr
ansactiondata.userexit

determineRelevantAttributesForFormulaIndepende
ntUserExits(boolean)

determineRelevantAttributesForRequirement(bool
ean, int)

determineRelevantAttributesForBaseFormula(bool
ean, int)

determineRelevantAttributesForValueFormula(boo
lean, int)

determineRelevantAttributesForScaleBaseFormula
(boolean, int)

determineRelevantAttributesForGroupConditionKe
y(boolean, int)

determineRelevantAttributesForPricingCopyFormu
la(boolean, int)

Removed Alternatively use transaction /n/SAPCND/UEASS to maintain the relevant
attributes for the formulas. Refer to Ch. 3.

PRICING USEREXIT MANUAL 49

getRequirementNumbers()

getConditionBaseFormulaNumbers()

getConditionValueFormulaNumbers()

getConditionScaleBaseFormulaNumbers()

getGroupConditionKeyFormulaNumbers()

getPricingCopyFormulaNumbers()

Removed Alternatively use transaction /n/SAPCND/UEASS to maintain the formula
numbers. Refer to Ch. 3.

pricingConditionInit(IPricingDocumentUserExit,
IPricingItemUserExit,
IPricingConditionUserExit)

Removed Alternatively extend the PricingConditionInitFormulaAdapter and
implement the method init(IPricingDocumentUserExit,
IPricingItemUserExit, IPricingConditionUserExit) as
described in Ch. 4.2.

pricingDocumentInit(IPricingDocumentUserExit) Removed Alternatively extend the PricingDocumentInitFormulaAdapter and
implement the method init(IPricingDocumentUserExit) as
described in Ch. 4.2.

pricingItemCalculateBegin(IPricingDocumentUser
Exit, IPricingItemUserExit)

Removed Alternatively extend the
PricingItemCalculateBeginFormulaAdapter and implement the
method calculationBegin(IPricingDocumentUserExit,
IPricingItemUserExit) as described in Ch. 4.2.

pricingItemCalculateEnd(IPricingDocumentUserEx
it, IPricingItemUserExit)

Removed Alternatively extend the PricingItemCalculateEndFormulaAdapter
and implement the method
calculationEnd(IPricingDocumentUserExit,
IPricingItemUserExit) as described in Ch. 4.2.

pricingItemInit(IPricingDocumentUserExit,
IPricingItemUserExit)

Removed Alternatively extend the PricingItemInitFormulaAdapter and
implement the method init(IPricingDocumentUserExit,
IPricingItemUserExit) as described in Ch. 4.2.

init(IEngineUserExit) Removed Alternatively

to get the Client use:
com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getClient();

to get the database connection: com.sap.sxe.db.db.getDb(). This is
not recommended nor supported by SAP. Refer to section “2.5 Restriction on
the Java Implementation”

checkRequirement(IConditionFindingManagerUserE
xit, IStep, int)

Removed Alternatively extend the RequirementAdapter and implement the method
checkRequirement(IConditionFindingManagerUserExit,
IStep, IAccess) as described in Ch. 4.2.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

50

overwriteConditionBase(IPricingItemUserExit,
ILastPrice, IPricingConditionUserExit, int)

Removed Alternatively extend the BaseFormulaAdapter and implement the method
overwriteConditionBase(IPricingItemUserExit,
IPricingConditionUserExit) as described in Ch. 4.2.

Note: to get the ILastPrice use method
IPricingItemUserExit.getUserExitLastPrice().

overwriteConditionValue(IPricingItemUserExit,
ILastPrice, IPricingConditionUserExit, int)

overwriteGroupConditionValue(IPricingDocumentU
serExit, IGroupConditionUserExit, int)

Removed Alternatively extend the ValueFormulaAdapter and implement the
method overwriteConditionValue(IPricingItemUserExit,
IPricingConditionUserExit) or/and
overwriteConditionValue(IPricingItemUserExit,
IPricingConditionUserExit) as described in Ch. 4.2.

Note: to get the ILastPrice use method
IPricingItemUserExit.getUserExitLastPrice().

overwriteGroupConditionScaleBase(IPricingDocum
entUserExit, IGroupConditionUserExit, int)

overwriteScaleBase(IPricingItemUserExit,
ILastPrice, IPricingConditionUserExit,
IGroupConditionUserExit, int)

Removed Alternatively extend the ScaleBaseFormulaAdapter and implement the
method overwriteScaleBase(IPricingItemUserExit,
IPricingConditionUserExit, IGroupConditionUserExit)
or/and
overwriteGroupScaleBase(IPricingDocumentUserExit,
IGroupConditionUserExit) as described in Ch. 4.2.

Note: to get the ILastPrice use method
IPricingItemUserExit.getUserExitLastPrice().

setGroupConditionKey(IPricingDocumentUserExit,
IPricingItemUserExit,
IPricingConditionUserExit,
IGroupConditionUserExit, int)

Removed Alternatively extend the GroupKeyFormulaAdapter and implement the
setGroupKey(IPricingDocumentUserExit,
IPricingItemUserExit, IPricingConditionUserExit,
IGroupConditionUserExit) as described in Ch. 4.2.

pricingCopy(IPricingDocumentUserExit,
IPricingItemUserExit,
IPricingConditionUserExit, IPricingType,
ICopyType, IQuantityValue, int)

Removed Alternatively extend the PricingCopyFormulaAdapter and implement
the method pricingCopy(IPricingDocumentUserExit,
IPricingItemUserExit, IPricingConditionUserExit,
IPricingType, ICopyType, IQuantityValue) as described in Ch.
4.2.

7.2.11 IDocumentUserExit
Earlier Release Changes in AP 7.00 Comments

PRICING USEREXIT MANUAL 51

Was part of package com.sap.spe.document Now is part of
com.sap.spe.document.u
serexit

init(IEngineUserExit) Removed Alternatively

to get the Client use:
com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getClient();

To get the database connection: com.sap.sxe.db.db.getDb(). This is
not recommended nor supported by SAP. Refer to section “2.5 Restriction on
the Java Implementation”

determineRelevantAttributes() Removed Alternatively use transaction /n/SAPCND/UEASS to maintain the relevant
attributes for the formulas. Refer to Ch. 3.

initializeDocument(IDocumentUserExitAccess) Removed Alternatively extend the PricingInitFormulaAdapter and implement
the method initializeDocument(IDocumentUserExitAccess) as
described in Ch. 4.2.

7.2.12 IItemUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spe.document Now is part of
com.sap.spe.document.u
serexit

init(IEngineUserExit) Removed Alternatively

to get the Client use:
com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getClient();

To get the database connection: com.sap.sxe.db.db.getDb(). This is
not recommended nor supported by SAP. Refer to section “2.5 Restriction on
the Java Implementation”

determineRelevantAttributes(boolean) Removed Alternatively use transaction /n/SAPCND/UEASS to maintain the relevant
attributes for the formulas. Refer to Ch. 3.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

52

addAttributeBindings(IItemUserExitAccess) Removed Alternatively extend the PricingPrepareFormulaAdapter and
implement the method
addAttributeBindings(IItemUserExitAccess) as described in
Ch. 4.2.

7.2.13 ISPCItemUserExit
Earlier Release Changes in AP 7.00 Comments

Was part of package com.sap.spc.base Now is part of
com.sap.spc.document.u
serexit

init(IEngineUserExit) Removed Alternatively

to get the Client use:
com.sap.vmc.runtime.RuntimeInformation.getInstance().
getUserInfo().getClient();

To get the database connection: com.sap.sxe.db.db.getDb(). This is
not recommended nor supported by SAP. Refer to section “Restriction on the
Java Implementation”

determineRelevantAttributes(boolean) Removed Alternatively use transaction /n/SAPCND/UEASS to maintain the relevant
attributes for the formulas. Refer to Ch. 3.

isSubItemCreatedBySceRelevantForPricing(ISPCIt
emUserExitAccess, Instance)

Removed Alternatively extend the
SPCSubItemCreatedByConfigurationFormulaAdapter and
implement the method
isRelevantForPricing(ISPCItemUserExitAccess,
Instance) as described in Ch. 4.2.

PRICING USEREXIT MANUAL 53

A BACKGROUND ON JAVA RESTRICTIONS
Chapter 2.5 provides a short list of restrictions on the java implementation of user exits in pricing. In this appendix
additional explanations and background information are provided.

The Virtual Machine Container (VMC) is part of the ABAP Web Application Server’s Kernel which enables Java
Bytecode to be executed in the same environment as ABAP. This means that the user exits are executed in a multi-
server and multi-VM environment.

The VMC creates dynamically several Java VMs processing different requests. The user’s session data is dynamically
attached to a free VM to process a request and is possibly detached afterwards so the Java VM can process another user
request.

Shared Memory is the memory which is used and managed by the VMC (once per Application Server Instance). This
Shared Memory contains

a pool of loaded and preprocessed/precompiled Java classes

all loaded user sessions

a pool of application data caches, like configuration (pricing procedures) or master data (e.g. condition records)

The Java VM itself adheres to the normal memory concept of a standard Java Runtime Environment. As a part of the
Java VM process separation (fail safety) e.g. the static members of each class are stored in that Java VM only. Also
native references (like JCo, File, Database, JDBC, …) are kept and managed by that single Java VM. The normal class-
instances created in that Java VM are also managed by that VM only.

During the processing of a request some user’s session specific data might be created. This data (instances of classes) is
copied per request to the shared memory. At the next request the (new) Java VM can get those user instances again by
copying (or mapping – then read-only) them back from the shared memory. This sharing of classes and sharing of
instances through the shared memory is the main reason for the listed restrictions.

A.1 Shared Memory caused restrictions
For each registered user exit an instance is created in the heap memory of each Java VM. Static variables are kept local
to that Java VM. Later this implementation detail may change and the instance of this user exit is kept in the shared
memory.

All instances of user exits and objects referenced by user exits must be shareable. Shareability is a restriction on
allowed instances and class constellations to allow the VMC to do a fast copy of the data from the Java VM into the
shared memory and back.

The important rules to follow for customer classes are:

Implement java.io.Serializeable

Do not use any custom code during serialization by implementing methods like readObject, writeObject,
readExternal, writeExternal, readResolve, writeResolve

Do not have transient fields

Do not use java.lang.Properties (not shareable)

Do not use own classloaders

Do not influence the Garbage Collector by implementing finalize() or derive from java.lang.Reference

Static members in customer code are not appreciated. The referenced objects stay in the Java VM and can pollute the
Java VM memory. These references are local to that Java VM and the user context may not run next time on the same
Java VM. This restriction can be relaxed for simple static final members, e.g. to java.lang.String,
java.math.BigDecimal or primitives like double, but using any container class (e.g. from class tree java.lang.Map) is
strongly discouraged.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

54

As the user exit instance is kept per Java VM (current pricing implementation), all instance members are shared and
therefore are accessible by each request running on the same Java VM. Any use of instance members, which are not
used within the same single method run, can lead to problems. That’s setting the member in one call and using the
member in another. In later Support Packages of the pricing engine the use of members in any user exit class (also
helper classes) will be causing issues, because the instance will be kept in shared memory and will only have read-only
accessibility.

A.2 Reuse of Java VM caused restrictions
The VMC technology does not support application code concurrency. That means that the code must not use

java.lang.Threads

sleep() / wait()

synchronize

The use of the above mentioned functionalities could lead to a break up of the transaction integrity or lock a Java VM.

This rule above is the main reason to avoid the use of DB, File, Socket, JCo functionality. Each of those functionalities
creates native references to the Operating System. A Java VM referencing native code can not be shared and the request
running might be mapped to another Java VM.

PRICING USEREXIT MANUAL 55

B OTHER WAYS TO INFLUENCE PRICING
Pricing is a highly customizable and configurable engine, but sometimes the normal possibilities provided by the
pricing engine are not sufficient. With the user exits nearly all special business requirements can be fulfilled. The VMC
restricts some of the used techniques so that adaptations need to be developed. One example is the use of DB selects to
retrieve additional information in e.g. ItemUserExit or requirement. Most performance issues other than group
conditions and exclusion logic are caused by user exit implementations.

Different ways of passing additional information or passing back extra results can be achieved by using the techniques
described in this chapter.

Please be reminded that using any of these techniques described in this document is not supported with a standard SAP
support contract (same as for the whole userexits concept).

B.1 Passing additional information to pricing
A good understanding of the condition technique (e.g. field catalogue) is a perquisite to understand this technique.

Pricing Attributes are used to access condition table during condition finding. E.g. the sold-to party is such an attribute
with a name and a value. These attributes can not only be used in access sequences but also in many user exits. The
retrieval of information for these attributes is best done outside the pricing engine and its user exits. This means that e.g.
the requirement (which is executed a many times) only takes that piece of information and uses it, but does not deal
with the retrieval.

To summarize, if the information used in a requirement is not depending on the current calculation result, then the
information can be passed to the pricing engine. This is the best way to avoid e.g. DB or JCo calls from the user exits.

Nearly all application scenarios using the pricing engine provide a way of filling additional attributes.

1. Create a field catalogue entry for the additional attribute

2. Program the filling of that attribute value

The application calling the pricing engine and the way it is allowing customer code to fill or influence attributes is not
part of this document. Here is only a short list of documentation to start with (also various notes exist):
Application Description
CRM Online Order
Processing

Implement BADI CRM_COND_COM_BADI. Note 850077

ISA R/3 and CRM Different BADIs available (first choice) or enhance backend objects. Service Market Place
“Development and Extension Guide – SAP Internet Sales”

Mobile Solutions Implement VBA user exit methods on SPCDOCHANDLER or SPCITEMHANDLER.
Note 677314 and Note 934216

B.2 External Data Source for Conditions
Some pricing conditions types can not be retrieved by normal condition finding. That is the configuration of access
sequences and condition tables is not flexible enough. In such a case an additional attribute, as shown in B.1, can be
used to fill the correct value of a condition.

An equivalent approach is supported in ABAP based scenarios (e.g. not MSA or ISA catalogue) by using the External
Data Source feature. To use this feature the pricing condition type must have the data source field (DTASRC)
configured to X/Y/Z and the BADI PRC_DATA_SOURCES implemented.

Version 1.04 – 02 ARP 2008 – © SAP AG 2008 – PricingUserexitManual

56

C FAQ

C.1 Implementation

1. How do I pass information from one user exit to another?
It is possible to transfer object references to the pricing document as well as to each item. Many user exits allow access
to the interface IPricingItemUserExit which provides the following methods for storing and retrieving data:

IPricingItemUserExit.setObjectForUserExits(String key, Object obj)

Object IPricingItemUserExit.getObjectForUserExits(String key)

Use the parameter key as a description of the information you want to store. obj is the stored object, containing your
data, which is shared and can be accessed later across the same item.

The same technique can be used to store data, unique within the entire document, by using the interface
IPricingDocumentUserExit. This can be accessed (if not passed in as an parameter) by calling
IPricingItemUserExit.getUserExitDocument().

Cautions: 1. All objects passed must be shareable. 2. Your coding should not depend on the sequence in which the user
exits are called. The pricing procedure is normally processed from top to the bottom i.e. a formula should only depend
on data calculated or set in the preceding lines of the pricing procedure. The sequence of processing of the pricing items
is not guaranteed.

2. How can I add or alter attribute values?
The attributes can be altered before the actual pricing starts (e.g. PricingInitFormulaAdapter). In this class you have
access to the method IDocumentUserExitAccess.addAttributeBinding(String attributeName, String[] attributeValues).
This call will replace the attribute values with the passed ones and returns the old attribute values.

Important: The attribute name must be registered.

3. How can I show error or warning messages to application users?
A message can be raised in the application log using the following methods. Depending on the scenario the message is
then displayed along with the other application messages. This is not supported in every scenario, e.g. Mobile
Applications.

IPricingDocumentUserExit.setStatusMessage(StatusEvent event)

IPricingItemUserExit.setStatusMessage(StatusEvent event)

As StatusEvent you should use one of its subclasses ErrorStatusEvent, InfoStatusEvent or WarningStatusEvent
(all from package com.sap.spe.base.util.event. Here is the signature of the method to use:

/** Creates a new instance with specified context
* @param source the source of this event
* @param messageArea the message area of the status information
* @param messageNumber the message number of the status information
* @param messageArguments the arguments of the status information
* @param message the current status information
* @param context the context of this event
* @param popup open message in PopUp
*/

public StatusEvent(Object source, String messageArea, int messageNumber,
String[] messageArguments, String message, String context, boolean popUp);

The boolean popUp should be false. True is not supported, source should be the local object this, messageArea is the
ABAP message class.

PRICING USEREXIT MANUAL 57

C.2 Troubleshooting

4. My user exits are not processed. What can I do?
You can check with the transaction sm53 if your jar package has been uploaded and the files are listed. As a second step
the registration must be checked. Be careful, the entries for the class name are case sensitive, with full specified java
package name and must not end with .class. You can further check the vmc log files for some indications, e.g. class
could not be found or instantiated or doesn’t extend the right class. Make also sure that you have assigned a formula
number to it (even if the userexit type has the scope B or C).

